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(<100 yr) to climate change and may act as a key component in the atmospheric 
CO2 level short-term regulation (Beaulieu et al., 2012). However, the relative role 
of climatic parameters on chemical weathering is still debated. Model simulations 
and geochemical studies of river-born material highlight either a temperature 
dependence (Walker et al., 1981), where warming promotes chemical weathering, 
or a predominance of other parameters like mechanical erosion (Raymo and 
Ruddiman, 1992; Gaillardet et al., 1999; Riebe et al., 2001; Donnadieu et al., 2004) 
and vegetation (Bayon et al., 2012). To address this question, another possible 
approach consists in investigating past continental environments through the 
study of marine or floodplain deposits. However, because in large river systems 
sediment transport and storage operates over >104 yr timescales (Granet et al., 
2010), a significant time lag may exist between the time when sediments acquired 
their geochemical characteristics, reflecting palaeoenvironmental conditions, and 
their final deposition.

Here we use the lithium (Li) isotopic composition of clays from sedi-
mentary records in Himalayan basins to determine how chemical weathering 
intensity has varied over the past 40 ka and particularly since the Last Glacial 
Maximum (locally older than 24 ka; Owen et al., 2002). In order to minimise 
the time lag between source and deposit locations, we have focused on alluvial 
deposits located in the headwater areas of the Ganges and Yamuna Rivers.

While little isotope fractionation occurs during mineral dissolution clay 
formation induces strong fractionations at low temperature, whereby 6Li is prefer-
entially incorporated into clays compared to 7Li, resulting in a strong enrichment 
of 7Li in waters (Burton and Vigier, 2011). Thus, it has been shown that the d7Li 
composition of natural waters can be used as a proxy for chemical weathering 
rates at the catchment scale, since the heaviest d7Li compositions in water are 
associated with the areas characterised by low catchment-wide silicate weath-
ering rates (Fig. 1). Several studies have also shown that the d7Li composition 
of solid weathering products (i.e. soils, river sediments) is sensitive to chemical 
weathering conditions, where lower d7Li values reflect more intensive leaching 
(Burton and Vigier, 2011).

To evaluate the reliability of the records studied, we investigated three 
different regions of the Himalaya and its piedmont in India: the upper Yamuna 
River basin, the Alaknanda River basin and the Donga Fan (Fig. S-1). Deposi-
tional ages for the alluvial deposits reported here were previously constrained by 
optically-stimulated luminescence (OSL) dating and range from 9 to 41 ka (Singh 
et al., 2001; Ray and Srivastava, 2010). Both bulk sediments and clay-sized frac-
tions were analysed for Li isotopes. In bulk sediments, mineralogical abundances 
and Sr isotopes were also measured (see Supplementary Information). 

The d7Li compositions of bulk sediments vary between -1.54 and +1.98 ‰, 
while clay-sized fractions show a much broader range. Most samples show low 
d7Li values best explained by significant 6Li enrichment during clay formation 
(Burton and Vigier, 2011). The d7Li values in bulk samples and clay-sized fractions 
evolve consistently as a function of time: both decrease between 35 and 25 ka, 
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It has long been recognised that the dissolution of minerals, chemical weath-
ering, can act as a long-term (>1 Ma) feedback on the Earth’s climate (Walker 
et al., 1981; Berner et al., 1983; Donnadieu et al., 2004). More recently, modelling 
studies have shown that the weathering engine can respond extremely rapidly 
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Figure 2 Clay d7Li as a function of terrace deposition ages (square: Yamuna, triangle: Donga 
Fan and diamonds: Alaknanda). The vertical bracket in the top left corner shows the external 
uncertainty for d7Li. The light green curve represents the precipitation changes in the SW 
Indian Monsoon for South Asia (green axis graduated from -20 to 20 %; Sanyal and Sinha, 
2010 and references therein). The black curve represents the d18OSMOW record from the Guliya 
ice core on the Qinghai-Tibetan Plateau (right y-axis) (Thompson et al., 1997). The grey curve 
is the d18OVPDB record from lacustrine sediments in the Goriganga basin (right y-axis), 100 km 
east of the study area (Beukema et al., 2011). Records from the Guliya ice core and the lacus-
trine sediments from the Goriganga basin show that relative changes in climatic conditions 
were consistent on both sides of the divide, at least for this period. Comparison with a global 
palaeo-climatic record is illustrated with the grey curve, showing the NGRIP ice core d18O record 
from Greenland for the same period (North Greenland Ice Core Project members, 2004).

After deposition, weathering of alluvial sediments could bias the Li isotope 
composition of sediments and clays. However, several lines of evidence argue 
against this: (i) post-depositional alteration is expected to mainly affect the 
“exchangeable” Li. Experimental work has shown that Li is quickly incorporated 
into clay octahedral sites. It then remains into these sites even after intensive 
(hydrothermal) treatment (Vigier et al., 2008). As a consequence, low-temperature 
water percolating through deposited sediment will principally, and quickly, react 
with exchangeable cations but not with Li+ ions in octahedral sites. Thus, to 

Figure 1 Relationship between d7Li values of waters and clay minerals, and silicate weather-
ing rates - estimated independently (d7Li = [(7Li/6Li) / (7Li/6Li)L-SVEC – 1]x1000) where L-SVEC is 
the standard). Most published studies highlight an inverse correlation between water d7Li and 
weathering rates at the watershed scale. For a given Li isotope fractionation between clay and 
water (Δ7Liclay-water), clay d7Li is expected to follow the same pattern with silicate weathering 
rates. Thus, low d7Li values are indicative of fast weathering rates. Insets show data for river 
waters from the Mackenzie basin in Canada (Millot et al., 2010) and from the basaltic basins 
of Iceland (Vigier et al., 2009). The curves in the insets show a logarithmic regression through 
the data. 

then increase between 25 and 10 ka (Fig. 2 and Fig. S-4). Several hypotheses 
can potentially account for the observed d7Li variations: (i) change of sediment 
sources, (ii) changes in chemical weathering conditions (prior to deposition) and 
(iii) post-depositional alteration within the terraces.

Change of sediment sources is unlikely to control the d7Li composition of 
clay-sized fractions because (i) the mineralogy of the clay-sized fraction is domi-
nated by secondary clays that account for most of the Li budget; (ii) most igneous, 
metamorphic and sedimentary rocks have d7Li ≥0 ‰ (Table S-3 and references 
therein). Thus, clay d7Li compositions as low as -4 ‰ between 30 and 25 ka are 
significantly lower than both the average values for unweathered continental 
rocks and published values for Himalayan river bedload sediments (Kisaku”rek 
et al., 2005). 



Geochemical Perspectives Letters Letter  Letter Geochemical Perspectives Letters

 
Geochem. Persp. Let. (2015) 1, 10-19 | doi: 10.7185/geochemlet.1502

 
Geochem. Persp. Let. (2015) 1, 10-19 | doi: 10.7185/geochemlet.150214 15

The strontium (Sr) isotope composition of bulk sediments also shows 
systematic variations with time, similar to that of d7Li (Fig. 3). Strontium isotopes 
have been used to study changes in the provenance of sediments, on the basis 
of different 87Sr/86Sr ratios in the source rocks found in the catchment (Galy and 
France-Lanord, 1999). Average 87Sr/86Sr ratios for the Higher Himalaya Crystal-
lines (HHC) and the Lesser Himalayas (LH) are significantly different: 0.76 ± 0.03 
and 0.85 ± 0.09, respectively (Rahaman et al., 2009). Thus, the observed increase 
in 87Sr/86Sr between 25 and 10 ka could be interpreted as an increasing contribu-
tion of sediments from the LH. However, as the monsoon intensified between 
25 and 10 ka ago (Sanyal and Sinha, 2010), moisture penetrated further north, 
promoting erosion in the HHC, as demonstrated for the Sutlej River (Bookhagen 
et al., 2005). More sediments from the HHC would have resulted in a decrease of 
sediment 87Sr/86Sr ratios, at odds with the data presented here (Fig. 3). Further-
more, if provenance controlled the 87Sr/86Sr ratio, sediments of the Donga Fan 
should show high values (because they only drain the LH) and the Sr isotopic 
composition of the Alaknanda River sediments should increase downstream (as 
more sediments are derived from the LH). However, our data show the opposite 
trend (Fig. S-6). 

Figure 3 87Sr/86Sr ratios of bulk sediments as a function of terrace deposition ages (same 
symbols as in Fig. 2). The error on 87Sr/86Sr ratios is smaller than the symbol size. The black 
curve represents the d18OSMOW record from the Guliya ice core on the Qinghai-Tibetan Plateau 
(right y-axis) (Thompson et al., 1997). The grey curve is the d18OVPDB record from lacustrine 
sediments in the Goriganga basin (right y-axis) (Beukema et al., 2011).

ensure that measured Li isotope compositions were not overprinted by any Li 
water-clay exchange during post-depositional alteration, the exchangeable Li was 
systematically removed during sample preparation (Supplementary Information). 
(ii) There is no simple relationship between d7Li compositions and sampling 
depth (Fig. S-5). In fact, superficial alteration was carefully avoided by collecting 
samples located at significant depths (9 m on average), whereas soil develop-
ment (if any) was restricted to the upper 2 m. Furthermore, all selected samples 
derive from undisturbed stratigraphic sections, with no sign of post-depositional 
alteration (Supplementary Information). (iii) If post-depositional alteration was 
significant, d7Li would be expected to correlate with depositional age. However, 
this is not observed as the oldest deposits (37-41 ka) display d7Li values that are 
similar to more recent sediments (Table S-1). Alternatively, the lack of relation-
ship with depositional age could reflect complex lateral fluid flow. However, this 
water-sediment interaction would also only affect the exchangeable Li, which 
was removed as indicated above. (iv) Several samples with similar depositional 
ages but from different regions show consistent d7Li values as a function of age 
(Table S-1). 

As a first approximation, since Li isotope fractionation during clay forma-
tion is temperature-dependent (Vigier et al., 2008), d7Li variations in clays could 
potentially reflect mean temperature change since the Last Glacial Maximum 
(LGM). Warming since the LGM has been estimated between 4 and 7 °C (Farrera 
et al., 1999). Experimental data indicate that this temperature increase could 
induce an increase in d7Li between 0.5 and 0.9 ‰ in the solid (Vigier et al., 
2008). This is well below the extent of the increase in d7Li observed in clay-sized 
fractions (of ~7 ‰). Thus, temperature variations alone cannot account for the 
observed range in d7Li values.

Several studies have shown that the d7Li values measured in river waters 
and soils decrease with increasing chemical weathering rates at the scale of the 
watershed or the soil profile (Fig. 1; Kisaku”rek et al., 2005; Vigier et al., 2009; Millot 
et al., 2010). In addition, the low d7Li values of clay-sized fractions support an 
enrichment in 6Li in secondary phases during chemical weathering (Kisaku”rek 
et al., 2005). Consequently, variations in d7Li are best explained by changes in 
weathering conditions over the past 40 ka. In this case, the decrease towards 
low d7Li compositions between 35 and 25 ka indicates an increase in weathering 
rates over this period of time. The following increase in d7Li between 25 and 
10 ka then suggests that weathering rates have decreased since the end of the 
LGM. An intimate link between climate and weathering in this region appears 
when comparing clay d7Li and the oxygen isotope compositions recorded by the 
Guliya ice core from the Qinghai-Tibetan Plateau (Fig. 2; Thompson et al., 1997). 
This oxygen isotope record is consistent with an intensification of the monsoon 
between 25 and 10 ka ago, as suggested by most studies (Goodbred and Kuehl, 
2000; Sanyal and Sinha, 2010; Beukema et al., 2011). Consequently, the co-vari-
ation between d7Li and d18O values indicates a synchronicity between changes 
in chemical weathering rates and monsoon intensity.
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Here, our results show that at the millennial scale, silicate chemical weathering 
rates in the Himalayan range are mainly driven by runoff and physical erosion, 
while temperature plays a secondary role. 
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