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Interpreting signals of volcanic unrest requires knowledge of the architecture of the
magmatic system, particularly the depths at which magmas are stored. Such infor-
mation can be vital to help predict changes in eruptive style and vigour. However,
popular petrological tools to assess magma storage depths (e.g., melt inclusions)
are costly, present large uncertainties, and are too slow for real time monitoring.
Here, we evaluate the reliability of Raman Spectroscopy measurements of CO2-
dominated fluid inclusions as a geobarometer relative tomicrothermometry andmelt
inclusion barometry. We calculate storage pressures for 102 olivine-hosted fluid
inclusions from the 2018 Lower East Rift Zone eruption of Kı̄lauea, which are sta-

tistically indistinguishable to those determined from melt inclusions. We show that calibrated Raman spectroscopy yields den-
sities within 5–10 % of microthermometry for CO2-dominated fluid inclusions (<10 mol % H2O) but is a far more suitable
method for systems like Kı̄lauea dominated by shallow magma storage. Overall, pressures determined from fluid inclusions
by Raman spectroscopy are robust and require only a fraction of the time and resources of melt inclusion studies.
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Introduction

Understanding magma storage depth is crucial for interpreting
volcanic signals, predicting eruptive changes and assessing the
potential for volcanic unrest. This parameter is commonly deter-
mined using erupted materials and petrological tools like melt
inclusion, mineral-mineral and mineral-melt barometry (Klügel
et al., 2005; Putirka, 2008; Barker et al., 2021). However, many
petrological tools present large uncertainties (i.e. ±8–19 km
for clinopyroxene-based barometers; Wieser et al., 2023) and
require extensive sample preparation, making them unsuitable
for real time monitoring. For example, melt inclusion work
involves numerous time and resource consuming sample prepa-
ration, analytical and data processing steps (Fig. 1). Despite
meticulous efforts, calculated pressures often come with signifi-
cant analytical and systematic uncertainties (e.g., melt and bub-
ble volume measurements, solubility models, post-entrapment
crystallisation corrections) that can range from 20 % to 50 %
when fully propagated (Tucker et al., 2019; Wieser et al., 2021;
DeVitre et al., 2023).

CO2-dominated fluid inclusions, tiny droplets of exsolved
fluids enclosed in growing crystals within a degassing melt
(Roedder, 1979), offer a compelling alternative to melt inclusions
for deducingmagma storage depths. At magmatic temperatures,
the CO2 density in a melt’s exsolved fluid phase strongly
depends on pressure, with little sensitivity to temperature
(Dayton et al., 2023). Therefore, with a well constrained CO2

density within a fluid inclusion and a reasonable estimate of
entrapment temperature, the entrapment pressure can be calcu-
lated using an equation of state (Fig. 1). Traditionally, CO2

density in fluid inclusions has been assessed using micro-
thermometry, which involves observing phase changes during
heating and cooling. this method has proven successful in
CO2-dominated volcanic systems (<10mol%H2O), particularly
those with deepmagma storage systems like the Canary Islands,
Cabo Verde Islands, and the Azores (Klügel et al., 2005, 2020;
Zanon and Frezzotti, 2013). However, it is difficult to measure
fluid inclusions trapped in shallower volcanic systems
(<∼6 km) by microthermometry, because the density of CO2

is below critical and the homogenisation of the liquid into the
vapour phase is nearly impossible to observe optically
(Hansteen and Klügel, 2008). Microthermometry also requires
the use of specialised heating/cooling stages and the preparation
of double polished crystal wafers (Fig. 1). The past decade of
advances in the accuracy of Raman-based CO2 densimetry
has opened new avenues for the technique (Lamadrid et al.,
2017; DeVitre et al., 2021). Specifically, Raman can measure
the density of very small fluid inclusions (down to ∼1 μm)
and/or those with low bulk CO2 densities (<0.45 g/cm3), impos-
sible by microthermometry, with an accuracy of ∼0.02 g/cm3

(Yuan and Mayanovic, 2017). Raman requires only a single pol-
ish to ensure visibility of fluid inclusions within ∼50 μm of the
surface, resulting in fewer preparation steps than microther-
mometry andmelt inclusionwork (Fig. 1). Because Raman is also
commonly employed in fields like chemistry, biology, material
science and physics, instrumentation is available at many
research institutions. Recent studies suggest that fluid inclusions
may have potential as a petrological monitoring tool, enabling
relatively rapid constraints on magma storage depth (Dayton
et al., 2023).
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However, fluid inclusions are prone to post-entrapment
modifications, like stretching and decrepitation, and significant
re-equilibration before eruption (e.g., Wanamaker and Evans,
1989; Hansteen and Klügel, 2008). This rapid re-equilibration
may cause fluid inclusions to reflect stalling levels rather than
true capture depths (Hansteen and Klügel, 2008; Zanon and
Frezzotti, 2013), or even undergo reset during slow quenching
(Klügel et al., 2020). As Raman-based fluid inclusion barometry
gains popularity, a critical question arises: are the storage depths
derived from CO2-dominated fluid inclusions consistent with
melt inclusion barometry and other estimates of magma storage
depths, or are they consistently reset by late stage processes dur-
ing magma ascent?

The 2018 Lower East Rift Zone (LERZ) eruption of Kı̄lauea
volcano in Hawai‘i is an ideal test bed to assess fluid inclusion
barometry, given that this volcano is extremely well monitored,
and geophysical methods have revealed two main regions
of magma storage (1–2 km and ∼3–5 km depth; Baker and
Amelung, 2012; Anderson and Poland, 2016; Anderson et al.,
2019). These geophysical estimates were corroborated by melt
inclusion work on erupted 2018 samples (Lerner et al., 2021;
Wieser et al., 2021). However, it is notable that both melt inclu-
sion studies were submitted ∼2 years after the eruption had
ended, a testament of the considerable analytical effort required
(Fig. 1), and thus the unsuitability of this method as amonitoring
tool. Here, we assess whether magma storage depths deter-
mined using Raman analyses of CO2-dominated fluid inclusions
would have yielded the same results. First, we evaluate the accu-
racy of the Raman method through a direct comparison with

microthermometry to validate our approach to determine
entrapment pressures. We compare pressures from 102 olivine-
hosted fluid inclusions to those of melt inclusions from the exact
same samples (or crystals when possible). Our results reveal
that magma storage depths calculated from fluid inclusion and
melt inclusion barometry are statistically indistinguishable.
However, fluid inclusions exhibit significantly smaller uncertain-
ties and require far fewer preparation and analytical steps
(Fig. 1).

Calibrated Raman Spectroscopy
is a Suitable Alternative to
Microthermometry

Despite its relative ease compared with microthermometry, and
ability to assess a wider range of CO2 densities, many aspects of
the Raman method have been recently criticised (e.g., peak fit-
ting, instrument drift, instrument calibrations), with suggestions
it is “150× less accurate thanmicrothermometry” (Bakker, 2021).
To assess whether Raman spectroscopy can reliably be used to
measure the density of CO2-dominated fluid inclusions, we
measured olivine-hosted fluid inclusions from Fogo volcano,
Cabo Verde (DeVitre et al., 2023) using both our calibrated
Raman instrument and microthermometry (ρCO2>∼0.45 g/cm3;
Figs. 2a, S-4). We measured the inclusions on the Raman while
maintaining a constant temperature of 37 °C and at low laser
power to mitigate potential effects of laser induced heating on
measured fermi diad separation (Hagiwara et al., 2021). Melting
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temperatures for all fluid inclusions analysed using microther-
mometry (11 crystals, ∼60 fluid inclusions) are −56.5 ± 0.1 °C
(Fig. 2a) which precludes the significant presence of any gaseous
species other than CO2 (confirmed via Raman Spectro-
scopy). Homogenisation temperatures obtained range from
−11.1 ± 0.1 to þ31.6 ± 1 °C (Fig. S-4b) and yield calculated bulk
densities between 0.49 and 0.99 g/cm3 (Fig. 2a). Results of

microthermometry and calibrated Raman spectroscopy are gen-
erally within 5% of each other (Fig. 2a), and up to 10% for inclu-
sions with near critical CO2 densities (∼0.45 g/cm3), where
microthermometry becomes extremely sensitive to the accuracy
of the homogenisation temperature and the phase transition is
difficult to constrain (Hansteen and Klügel, 2008). Regression
statistics confirm good agreement between the two methods
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Figure 2 Comparison of Raman spectroscopy vs. Microthermometry, and of melt inclusion barometry vs. fluid inclusion barometry. (a, b)
Density via Raman vs. density obtained frommicrothermometry. Outlined symbols represent averaged Raman measurement for each fluid
inclusion and symbols without outlines are individual Ramanmeasurements. Error bars show ±1σ of repeatedmeasurements for Raman and
microthermometry. (c) Crystal with clearly texturally related melt inclusions and fluid inclusions (LL8_406) showing overlapping pressures.
(d) Crystal with texturally unrelated melt inclusions and fluid inclusions (LL4_12); fluid inclusions are found in a smaller olivine crystal in the
same crystal cluster and return lower pressures. Specific crystal plots and images for every other pair identified are provided in the
Supplementary Information Image Database for detailed comparisons.
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(Fig. 2a; R2= 0.96, RMSE= 0.02 g/cm3, p= 7.44e−45). Overall,
this comparison validates Raman spectroscopy measurements
as a suitable alternative to microthermometric measurements
(see also Kobayashi et al., 2012).

Fluid and Melt Inclusion Pressures Yield
a Consistent Petrogenetic Model

Having validated the Raman method for CO2 density measure-
ments, we aim to assess whether fluid inclusion pressures are a
viable alternative to the commonly used melt inclusion method.
The most robust comparison involves examining pressures from
melt and fluid inclusions within a single crystal. Accordingly, we
analysed 36 CO2-dominated fluid inclusions in 17 crystals that
also contained melt inclusions, as measured by Wieser et al.
(2021; Fig. 2). Petrographic analysis was conducted to categorise
fluid inclusions based on their shapes, positions, and approxi-
mate textural relationship to the melt inclusions. We remove
fluid inclusions with a significant melt film (>20 vol. %) and poor
quality Raman analyses (see Supplementary Information).Over-
all, we find that fluid inclusions hosted in the same crystals, same
inclusion assemblages or apparent growth zones record the
same entrapment pressures as reconstructed melt inclusions
within the uncertainty of the methods (Fig. 2b). In contrast, tex-
turally unrelated fluid inclusions and melt inclusions (e.g., the
fluid inclusion is present in the same crystal cluster but within
a separate smaller crystal) tend to yield different pressures
(Fig. 2d). If crystals were attached via synneusis (Wieser et al.,
2019; DiBenedetto et al., 2020), it is very plausible that the
smaller crystal grew in a different environment, explaining the
lower fluid inclusion pressure (Fig. 2c). In general, it appears that
if fluid inclusions are well documented and selected with care
(i.e. fluid inclusions in crystal core growth zones), the estimates
of pressure for fluid inclusions are consistent with those from
melt inclusion work at Kı̄lauea.

The large errors on melt inclusion pressures are notable
during these comparisons and mainly result from uncertainty
in the relative volume of the vapour bubble (orange ‘MI w/VB’
error bar in Fig. 3; Wieser et al., 2021; Tucker et al., 2019). The
uncertainties on CO2-dominated fluid inclusion pressures
are much smaller as they are only a result of peak fitting, drift
corrections, and uncertainty in the temperature of fluid trap-
ping/re-equilibration (Wieser and DeVitre, 2023). These sources
of uncertainty were propagated in DiadFit (Wieser and DeVitre,
2013) using Monte Carlo simulations considering 50 K uncer-
tainty on the temperature (see Supplementary Information for
details on temperature) and a 1σ uncertainty on density based
on peak fit uncertainties of CO2 spectra as well as the uncertainty
in the Ne correction model. We also correct pressures for the
presence of H2O in the exsolved fluid using the mixed CO2-
H2O EOS of Duan and Zhang (2006) using XH2O values inferred
from melt inclusion data at Kı̄lauea (Wieser et al., 2021), further
propagating the additional uncertainty introduced by this correc-
tion step (see Section S-3 of the Supplementary Information).

Due to the scarcity of fluid inclusions in the exact same
crystal as melt inclusions, direct comparisons are limited.
To complement our dataset, we also analysed an additional
109 fluid inclusions in olivine crystals picked directly from the
same sample split as the melt inclusions. After filtering those
with >20 % melt film and poor quality spectra, we report a total
of 102 fluid inclusions and compare them with 103 melt inclu-
sions from Wieser et al. (2021). When subdivided by sample
(May, July, August 2018), histograms indicate good agreement
between the pressures recorded by fluid inclusions and melt

inclusions (Fig. 3a–c), particularly when considering the analyti-
cal uncertainty associated with melt inclusions measurements.

We apply the Kolmogorov–Smirnov test (KS) to evaluate if
observed visual differences are statistically significant. Sample KS
tests reveal that melt and fluid inclusion pressures are not signifi-
cantly different for May 2018 (p= 0.16) but suggest a possible sig-
nificant difference for July and August 2018 (p= 0.001 and 0.03,
respectively). However, these comparisons are constrained by
the relatively small n for each sample (n< 50) and the compara-
tively large analytical errors on melt inclusion measurements. To
address this limitation, we conduct a Monte Carlo simulation
using Python3, re-sampling each melt and fluid inclusion mea-
surement 1000 times within analytical uncertainty. KS tests on
these re-sampled distributions indicate that the fluid and melt
inclusion pressure distributions are not significantly different for
any of the three events (p= 0.44 ± 0.20, 0.05 ± 0.05 and 0.02 ±
0.03 for May, July and August, respectively), with differences
attributable to the uncertainty in melt inclusion measurements.

Until now, we focused on the analytical uncertainty tied to
melt and fluid inclusion saturation pressures. However, recon-
structed melt inclusion H2O and CO2 concentrations undergo
conversion into pressures using a solubility model, introducing
substantial systematic uncertainty (see Wieser et al., 2022).
In Figure 3g–i, we present pressures calculated using the
MagmaSat model (Ghiorso and Gualda, 2015), deemed most
suitably calibrated at Kı̄lauea by Wieser et al. (2021). Yet, little
consensus exists; for the same eruption, Lerner et al. (2021)
employed the solubility model of Iacono-Marziano et al. (2012).
Cumulative melt inclusion pressures for five different solubility
models indicate that the uncertainty linked to model choice
can readily explain any slight differences between melt and fluid
inclusion pressures (Fig. S-9). Another advantage of fluid inclu-
sion barometry, compared to melt inclusion barometry, is that
the choice of EOS does not significantly contribute to the uncer-
tainty (Hansteen and Klügel, 2008).

Slight differences between fluid and melt inclusion pres-
sures may be attributed to sampling bias linked to the complex
histories of the 2018 crystal cargo. Lerner et al. (2021) and
Wieser et al. (2021) proposed that crystals originate from
two storage reservoirs beneath Kı̄lauea’s summit based on
the relationship between melt inclusion saturation pressures,
entrapment depths, and olivine forsterite content (Fo = Mg2+

/[Mg2+ + Fe2+], atomic). Specifically, Wieser et al. (2021) reported
entrapment depths of 0.89–1.74 km for low Fo (<81.5mol%) oliv-
ines in equilibrium with the carrier melt and ∼2–5 km for high
Fo (>81.5 mol %) olivines, aligning with geophysical estimates
for the two magma reservoirs at Kı̄lauea (Poland et al., 2014;
Anderson et al., 2019). Fluid inclusion pressures support this cor-
relation, with those trapped in lower Fo content olivine crystals
tending to have lower entrapment pressures (Fig. 3g–i). This high-
lights that similar petrogenetic interpretations can be derived from
both fluid and melt inclusions.

Assessing Fluid Inclusion
Re-equilibration

Although differences between melt inclusions and fluid inclu-
sions are not statistically significant (Fig. 3d–f), some fluid inclu-
sions indicate shallower pressures compared to melt inclusions
for an equivalent olivine Fo content (i.e. , Fig. 3e,h). Unlike
melt inclusions, which contend with significant systematic
uncertainties related to solubility models (Fig. S-9), the primary
source of uncertainty for CO2-dominated fluid inclusions is re-
equilibration during prolonged storage and transport. To assess
whether re-equilibration could explain the seemingly lower
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pressures recorded by fluid inclusions in July 2018, we con-
structed a Python3 implementation of the mechanical re-
equilibration model of Wanamaker and Evans (1989) based on
olivine relaxation through dislocation creep (RelaxiFI; see Data
Availability). We model the effect of fluid inclusion stretching
on the internal pressure and CO2 density for fluid inclusions
using the EOS of Span and Wagner (1996). We consider fluid
inclusions with a radius of 1 and 20 μm at variable distances
(50–500 μm) from crystal defect structures (i.e. cracks, crystal
edges and boundaries). It has also been suggested that fluid
inclusions erupted in lava flows may re-equilibrate during
post-eruptive cooling (Klügel et al., 2020). The May 2018 sample
is a rapidly quenched reticulite, and the Aug 2018 sample was
water quenched from the lava channel. In contrast, the July

2018 sample was an air cooled overflow from the channel.
Based on observing the formation and quenching of other over-
flows, we predict that cooling occurred within hours. However,
even allowing up to 7 days of re-equilibration results in less than
1 % difference (Fig. 4a,b), well within analytical uncertainty.
Next, we consider a fluid inclusionwhichmay have been trapped
in the deeper South Caldera reservoir (∼4 km, 1300 °C) before
being mobilised to the Halema‘uma‘u reservoir (∼1 km depth,
1150 °C), and stored for 0–2 years prior to eruption (based on
diffusion timescales from Mourey et al., 2023; Fig. 4c,d). In the
most extreme case (stretching of a 20 μm radius fluid inclusion
found 50 μm from a crystal defect), stalling for 2 years causes a
decrease in CO2 density of less than 10 %, also smaller than the
average measurement uncertainty.
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Overall, our results indicate that in shallow systems such
as that of Kı̄lauea where the internal pressure of the fluid inclu-
sion is relatively low, stretching on timescales relevant tomagma
storage in upper storage reservoirs and syn-eruptive quenching
is unlikely to play a major role and re-equilibration is of no sig-
nificant concern.

Conclusions

In analysing the 2018 LERZ eruption of Kı̄lauea volcano,
we compared magma storage depth estimates using CO2-
dominated fluid inclusions to those obtained throughmelt inclu-
sion studies. Our findings suggest that fluid inclusions at Kı̄lauea
are minimally affected by re-equilibration within relevant time-
scales for magma storage and migration. They consistently
reflect entrapment depths comparable to melt inclusions in
the same samples. Consequently, fluid inclusions emerge as a
reliable alternative to melt inclusions for barometry in shallow
CO2-dominated volcanic systems.
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Figure 4 Assessing crystal cargoes and fluid inclusion re-equilibration. (a) Schematic diagram of Kı̄lauea plumbing system showing the sce-
nariomodelled in (b), where 1 and 20 μm radii fluid inclusions are captured in olivine crystals at the South Caldera (SC), they are transported
to Halema‘uma‘u (HM) reservoir, almost immediately mobilised to the Lower East Rift Zone (LERZ), erupted, and slowly quenched for 7 days
(T is kept at 1150 °C in themodel). (b) Stretchingmodel for slowquenching scenario in (a). (c)Diagram for the scenariomodelled in (d), where
the magma stalls at Halema‘uma‘u (HM) reservoir for 2 years prior to eruption. (d) Stretching model for stalling scenario in (c).

Geochemical Perspectives Letters Letter

Geochem. Persp. Let. (2024) 29, 1–8 | https://doi.org/10.7185/geochemlet.2404 6

https://github.com/cljdevitre/KilaueaMIFI2023
https://github.com/cljdevitre/KilaueaMIFI2023
https://doi.org/10.7185/geochemlet.2404


published in the article, the notebooks for running the MC KS
test simulations and data processing notebooks. This reposi-
tory is archived on Zenodo (https://zenodo.org/doi/10.5281/
zenodo.10520936). Peak fitting and EOS calculations were
performed in DiadFit (see https://github.com/PennyWieser/
DiadFit, https://doi.org/10.31223/X5CQ1F). The python3 tool
developed to assess re-equilibration of FI is available at
https://github.com/cljdevitre/RelaxiFI.

Additional Information

Supplementary Information accompanies this letter at https://
www.geochemicalperspectivesletters.org/article2404.
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