T.W. Dahl, J.N. Connelly, A. Kouchinsky, B.C. Gill, S.F. Månsson, M. Bizzarro
10
1724cor
9
April
2019
12
April
2019
30
April
2019
40
0
Corrigendum to “Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago” by Dahl et al., 2017
1Natural History Museum of Denmark, University of Copenhagen, Denmark
J.N. Connelly1,2, 1Natural History Museum of Denmark, University of Copenhagen, Denmark
2Centre for Star and Planet Formation, University of Copenhagen, Denmark
3Swedish Museum of Natural History, Stockholm, Sweden
B.C. Gill4,4Virginia Polytechnic Institute and State University, Blacksburg, USA
S.F. Månsson1,1Natural History Museum of Denmark, University of Copenhagen, Denmark
M. Bizzarro1,2 1Natural History Museum of Denmark, University of Copenhagen, Denmark
2Centre for Star and Planet Formation, University of Copenhagen, Denmark
T.W. Dahl
Email: tais.dahl@snm.ku.dk
1Natural History Museum of Denmark, University of Copenhagen, Denmark
2Center for Star and Planet Formation, University of Copenhagen, Denmark
3Swedish Museum of Natural History, Stockholm, Sweden
4Virginia Polytechnic Institute and State University, Blacksburg, USA
Corrigendum to “Reorganisation of Earth's biogeochemical cycles briefly oxygenated the oceans 520 Myr ago” by Dahl et al., 2017. Geochem. Persp. Let. 10, 40.
Geochemical Perspectives Letters v10 | doi: 10.7185/geochemlet.1724cor
Received 9 April 2019 | Accepted 12 April 2019 | Published 30 April 2019
Published by the European Association of Geochemistry
under Creative Commons License CC BY-NC-ND 4.0
- Share this article
Article views:246Cumulative count of HTML views and PDF downloads.
- Download Citation
- Rights & Permissions
top
Corrigendum
Correction to: Geochemical Perspectives Letters v3, n2, 210-220, doi: 10.7185/geochemlet.1724, published on 15 June 2017.
The authors have identified an error in Figures S-8 and S-9 of the Supplementary Information accompanying the original article. Figures S-8 and S-9 have now been corrected in the online and PDF versions of the Supplementary Information and the correct figures are shown below.
Figures and Tables
Back to article
Supplementary Figures and Tables
Table S-1 Pearson's correlation coefficients and p-values calculated to test the influence of diagenetic indicators on δ238U and U/Th. Uranium content (U) is linearly correlated to U/Th, hence the significance of the correlations between U and diagenetic indicators are similar. Statistical significant relationships are in bold (confidence interval = 5 %).
R | p-value | |
δ238U vs. U | 0.12 | 0.71 |
δ238U vs. U/Th | 0.15 | 0.67 |
U vs. U/Th | 0.96 | 8.11E-07 |
δ238U vs. δ13C | 0.82 | 0.005 |
δ238U vs. Mg/Ca | 0.52 | 0.15 |
δ238U vs. TOC | -0.31 | 0.41 |
δ238U vs. δ18O | 0.68 | 0.04 |
δ238U vs. Mn/Sr | 0.14 | 0.69 |
δ238U vs. Al/Ca | #N/D | #N/D |
δ238U vs. Sr/Ca | 0.5 | 0.14 |
δ238U vs. calcite | -0.66 | 0.07 |
δ238U vs. quartz | 0.69 | 0.05 |
δ238U vs. dolomite | 0.38 | 0.34 |
δ238U vs. ankerite | -0.68 | 0.16 |
δ238U vs. chlorite | 0.14 | 0.76 |
δ238U vs. mica | 0.21 | 0.61 |
δ238U vs. K-feldspar | 0.44 | 0.27 |
U/Th vs. δ13C | 0.15 | 0.67 |
U/Th vs. Mg/Ca | 0.49 | 0.15 |
U/Th vs. TOC | -0.1 | 0.78 |
U/Th vs. δ18O | 0.59 | 0.07 |
U/Th vs. Mn/Sr | -0.13 | 0.71 |
U/Th vs. Al/Ca | #N/D | #N/D |
U/Th vs. Sr/Ca | 0.16 | 0.65 |
U/Th vs. calcite | -0.13 | 0.75 |
U/Th vs. quartz | 0.04 | 0.92 |
U/Th vs. dolomite | 0.3 | 0.44 |
U/Th vs. ankerite | -0.24 | 0.63 |
U/Th vs. chlorite | 0.01 | 0.98 |
U/Th vs. mica | -0.13 | 0.73 |
U/Th vs. K-feldspar | 0.06 | 0.88 |
Table S-2 Uranium extracted from two reference materials with the sequential extraction procedure.
U (ppb) | KTChalk | MCPhos |
(100 % CaCO3) | (8.5 wt. % P2O5) | |
10 % acetic acid | 70 ± 4 | 440 ± 5 |
0.5 M HCl | 19 ± 1 | 872 ± 423 |
2 M HCl | 4 ± 0 | 133 ± 49 |
HF + HNO3 | 14 ± 0 | 994 ± 8 |
Total | 107 ± 4 | 2439 ± 426 |
Table S-3 Comparison of extraction yields for acetic acid vs. hydrochloric acid of various molarity.
U | KTChalk | MCPhos |
10 % acetic acid | 75 ± 4 % | 30 ± 0 % |
0.5 M HCl | 20 ± 1 % | 60 ± 29 % |
2 M HCl | 4 ± 0 % | 9 ± 3 % |
Total | 100 % | 100 % |
Table S-4 Repeated analyses of carbonate-associated U and δ238UCAU using the mild acetic acid extraction (with variable reaction time).
Replicate | Reaction time | U (ppb) | δ238U (‰) |
SRM-1d (modern argillaceous limestone) | |||
#1 | 16 hr | 70 | –0.09 ± 0.02 |
#2 | 16 hr | 743 | –0.08 ± 0.02 |
#3 | 16 hr | 639 | –0.11 ± 0.02 |
T1-13 (Cambrian limestone) | |||
#3 | 30 min | 298 | –0.85 ± 0.02 |
#4 | 4 hr | 292 | –0.83 ± 0.02 |
#5 | 16 hr | 281 | –0.82 ± 0.03 |
T1-26.5 (Cambrian limestone) | |||
#1 | 16 hr | 102 | not determined |
#2 | 16 hr | 155 | –0.56 ± 0.02 |
#3 | 16 hr | 154 | –0.60 ± 0.03 |
Table S-5 Extraction yields for various mixtures of KTChalk and MCPhos.
Acid | Chalk | 1:1† | 1:2ß | MCPhos | 1:1† | 1:2ß |
measured | predicted | |||||
10 % acetic | 65 % | 35 % | 24 % | 18 % | 40 % | 33 % |
0.5 M HCl | 18 % | 37 % | 34 % | 36 % | 27 % | 30 % |
2 M HCl | 4 % | 5 % | 12 % | 5 % | 5 % | 5 % |
HF + HNO3 | 13 % | 24 % | 3 % | 41 % | 28 % | 33 % |
†Mixing ratio 1:1 corresponds to 1.0187 g KTChalk (108 ng U) + 0.0519 g MCPhos (127 ng U).
ßMixing ratio 1:2 corresponds to 1.0993 g KTChalk (117 ng U) + 0.1138 g MCPhos (278 ng U).
Table S-6 Five parameterisations for the modern oceanic uranium isotope budget shown in Figure S-6. The models are broadly consistent with the modern ocean state.
Case | 1 | 2 | 3 | 4 | 5 | 6 |
Default | low δIN | hi ΔANOX | hi δIN | low ΔANOX | hi ΔOTHER | |
δIN | –0.27 ‰ | –0.34 ‰ | –0.27 ‰ | –0.30 ‰ | –0.27 ‰ | –0.27 ‰ |
ΔOTHER | 0.04 ‰ | 0.00 ‰ | 0.10 ‰ | 0.10 ‰ | 0.04 ‰ | 0.15 ‰ |
ΔANOX | 0.50 ‰ | 0.50 ‰ | 0.60 ‰ | 0.60 ‰ | 0.40 ‰ | 0.40 ‰ |
Table S-7 Parameter values used in the coupled Mo–U isotope mass balance models for today's ocean.
Mo | U | |
δIN | 0.7 | -0.27 |
ΔOX | 2.8 | 0.04 |
ΔANOX | 0.0 | 0.50 |
ΔSAD | 1.4 | - |
ƒOX | 30 % | 82 % |
ƒSAD | 58 % | - |
ƒEUX | 12 % | 18 % |
Predicted δSW | 2.35 | -0.393 |
Observed δSW | 2.34 ± 0.10 | -0.392 ± 0.005 |
(Note that all Δs are here defined positive, despite Mo and U isotope fractionations have opposite signs).
Back to article | Download in ExcelTable S-8 Parameter values used for the C and S modelling.
Modern alue | Explored range | Explanation | Ref | |
α | 0.0072 | x (3-30) | Ratio of pyrite formation to organic carbon remineralisation rate | B07 |
JRAIN | 192 · 1012 | ¥ | mol/yr. Modern organic rain rate | |
JORG | 26 · 1012 | ¥ | mol/yr. Modern marine organic C burial rate | B07 |
JLAND | 26 · 1012 | ß | mol/yr. Modern terrestrial organic C burial rate | |
JEVAP | 2.1·1012 | x (0.2 - 1) | mol/yr. Cenozoic sulphate burial rate | CF09† |
JCARB | 216·1012 | x (0.2 - 1) | mol/yr. Modern carbonate burial rate | BB12 |
δIN.C | –5 ‰ | –5 ± 1 ‰ | δ13C of oceanic input | |
ΔC | 26 ‰ | 24-30 ‰ | Average δ13C offset between seawater and buried organic matter | |
δin.S | 8 ‰ | 4-16 ‰ | δ34S of oceanic input | |
ΔS | 35 ‰ | 35-50 ‰ | Average δ34S offset between seawater and buried pyrite | |
SR | 40 · 1012 | mol/yr. Modern organic burial rate | B07 | |
SO42- | 28 | 2-3 | mM. Modern oceanic sulphate level | |
JPY | 1.2 · 1012 | ¥ | mol/yr. Modern pyrite burial rate | B07 |
† The size of the modern oxidising C and S sinks were established from the isotope-derived f-constraints (Burdige, 2007; Saltzman and Thomas, 2012), suggesting ƒORG = 0.192 and ƒPY = 0.36 leads to steady state seawater values of δ13C = 0 ‰ and δ34S = 21 ‰, respectively. We assume that the modern terrestrial organic carbon burial equals that of marine organic carbon burial (Bergman et al., 2004), and neglect terrestrial pyrite burial.
¥ Model results are given in Tables S-9 to S-14
ß Terrestrial organic carbon burial (e.g., coal) is assumed equal to marine organic carbon (Bergman et al., 2004). Ref. B07 = Burdige (2007), Ref CF09 = Canfield and Farquhar (2009), Ref BB12 = Berner and Berner (2012).
Table S-9 Changes in the f-ratios during the Cambrian Stage 2–3 oxygenation episode. Uncertainties are propagated from the uncertainty of the isotope compositions of the inputs and the isotope fractionation associated with burial in reducing sinks (Table S-8)
Before the event | At the peak | Behaviour | Modern value | |
δC | 0 % | 3 % | increase | 0 ‰ |
δS | 28 % | 40 % | increase | 21 ‰ |
this leads to: | ||||
ƒORG | 17 ± 4 % | 28 ± 5 % | increase | 20 ‰ |
ƒPY | 40 ± 17 % | 70 ± 22 % | increase | 36 ‰ |
Table S-10 Ratios between reducing and oxidising sinks for carbon and sulphur changed during the Cambrian Stage 2–3 event.
Before the event | At the peak | Behaviour | Modern value | |
δ13C | 0 ‰ | 3 ‰ | increase | 0 ‰ |
δ34S | 28 ‰ | 40 ‰ | increase | 21 ‰ |
ƒORG /(1-ƒORG) | 0.21 ± 0.06 | 0.40 ± 0.10 | increase | 0.25 |
ƒPY/(1-ƒPY) | 0.81 ± 0.51 | 6.21 ± 5.29 | increase | 0.56 |
Table S-11 Consequences for absolute organic carbon and pyrite sulphur flux, assuming modern-day values for JCARB, JEVAP, and α. The other constants are δIN, C = –5 ‰, δIN, S = 8 ‰, ΔS = 35 ‰, Δbio = 26 ‰. Flux unit: mol/yr.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 440·1012 | 3190·1012 | increase | 192 ·1012 |
JORG | 52·1012 | 96·1012 | increase | 26 ·1012 |
JPY | 2.8·1012 | 22·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.88 | 0.97 | increase | 0.87 |
Table S-12 Calculations with α = 0.070 (= 10 x modern). The higher α value leads to a solution with more modest organic load fluxes and less remineralisation, fREMIN < 0.76.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 90·1012 | 406·1012 | increase | 192 ·1012 |
JORG | 50·1012 | 93·1012 | increase | 26 ·1012 |
JPY | 2.8·1012 | 22·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.43 | 0.76 | increase | 0.87 |
Table S-13 Calculations with oxidative burial fluxes (JCARB, JEVAP) set at 1/4 of modern values. α set at 0.070.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 23·1012 | 100·1012 | increase | 192 ·1012 |
JORG | 13·1012 | 24·1012 | increase | 26 ·1012 |
JPY | 0.70·1012 | 5.6·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.43 | 0.76 | increase | 0.87 |
Table S-14 Calculations with ΔS set at 50 ‰ (as opposed to 35 ‰). α = 0.070.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 69·1012 | 145·1012 | increase | 192 ·1012 |
JORG | 50·1012 | 93·1012 | increase | 26 ·1012 |
JPY | 1.4·1012 | 3.7·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.27 | 0.35 | increase | 0.87 |
Table S-15 Calculations with δIN,S set at 16 ‰ (as opposed to 8 ‰). α = 0.070.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 67·1012 | 159 ·1012 | increase | 192 ·1012 |
JORG | 50·1012 | 93 ·1012 | increase | 26 ·1012 |
JPY | 1.1·1012 | 4.6 ·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.23 | 0.40 | increase | 0.87 |
Table S-16 Calculations with δIN,C set at –4 ‰ (as opposed to –5 ‰). α = 0.070.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 71·1012 | 373·1012 | increase | 192 ·1012 |
JORG | 31·1012 | 61·1012 | increase | 26 ·1012 |
JPY | 2.8·1012 | 22·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.55 | 0.83 | increase | 0.87 |
Table S-17 Calculations with ΔBIO = 30 ‰ (as opposed to 26 ‰). α = 0.070.
Before the event | At the peak | Behaviour | Modern value | |
JRAIN | 82·1012 | 388·1012 | increase | 192 ·1012 |
JORG | 42 ·1012 | 76 ·1012 | increase | 26 ·1012 |
JPY | 2.8 ·1012 | 22 ·1012 | increase | 1.2 ·1012 |
ƒREMIN | 0.47 | 0.80 | increase | 0.87 |
Table S-18 Summary of selected solutions and the increasing organic rain rate during the Cambrian Stage 2–3 event.
Case | Example | Initial JRAIN | Increase of JRAIN | ƒREMIN |
Modern oceans | 219·1012 | 87 % | ||
1 | Higher α (10-fold, α = 0.072) (Table S-12) | 90·1012 | x 4.5 | 43 to >76 % |
1b | Higher α (3-fold, α = 0.022) | 181·1012 | x 6.3 | 71 to >91 % |
1c | Higher α (30-fold, α = 0.22) | 64·1012 | x 3.1 | 20 to >52 % |
2 | Case 1 + smaller JCARB, JEVAP (1/5) (Table S-13) | 23·1012 | x 4.5 | 43 to >76 % |
3 | Case 1 + higher ΔS (50 ‰) (Table S-14) | 71·1012 | x 2.1 | 27 to >35 % |
4 | Case 1 + higher δIN,S (16 ‰) (Table S-15) | 67·1012 | x 2.4 | 23 to >40 % |
Table S-19 Elemental and isotope data for samples from the Sukharikha River Section. Reference materials include IAPSO seawater, argillaceous limestone (SRM-1d), carbonatite (COQ-1) and Columbia River basalt (BCR-2). rpt = repeated analyses.
Sample | Strat. height (m) | Age* (Ma) | Th (ppb) | U (ppb) | U/Th | δ238U (‰) | ± 2SE (‰) | n | U EFTh ƒ | Mg/Ca | Al/Ca | Fe/Ca | Mn/Sr | Sr/Ca |
Sukharikha River Section (A), Krasnoporog Fm | ||||||||||||||
A393 | 624.6 | 519.81 | 301 | 93 | 0.31 | -0.667 | 0.032 | 5 | 0.2 | 0 | 0 | 0 | 0.45 | 0.0015 |
A388 | 619.6 | 519.98 | 249 | 83 | 0.33 | -0.686 | 0.021 | 5 | 0.3 | 0 | 0 | 0 | 0.65 | 0.0013 |
A384 | 615.6 | 520.12 | 408 | 39 | 0.09 | -0.6 | 0.02 | 1 | -0.7 | 0 | 0 | 0 | 0.82 | 0.0012 |
A379 | 610.6 | 520.29 | 155 | 60 | 0.39 | -0.433 | 0.043 | 5 | 0.5 | 0.02 | 0 | 0.01 | 0.89 | 0.0014 |
A376 | 607.6 | 520.39 | 221 | 169 | 0.77 | 1.9 | 0.0018 | |||||||
- rpt | 607.6 | 520.39 | 228 | 214 | 0.94 | -0.63 | 0.015 | 5 | 2.6 | 0.89 | ||||
A372 | 603.6 | 520.53 | 449 | 54 | 0.12 | -0.517 | 0.026 | 3 | -0.5 | 0.0014 | ||||
- rpt | 603.6 | 520.53 | 333 | 44 | 0.13 | -0.5 | 0.01 | 0 | 0.02 | 0.76 | ||||
A368 | 599.6 | 520.66 | 317 | 196 | 0.62 | -0.432 | 0.027 | 5 | 1.4 | 0.01 | 0 | 0.01 | 0.56 | 0.0016 |
A366 | 597.6 | 520.73 | 275 | 445 | 1.62 | -0.542 | 0.023 | 5 | 5.2 | 0.02 | 0 | 0.01 | 0.52 | 0.0014 |
A364 | 595.6 | 520.8 | 231 | 90 | 0.39 | -0.625 | 0.015 | 5 | 0.5 | 0.01 | 0 | 0.01 | 0.52 | 0.0013 |
A361 | 592.6 | 520.9 | 352 | 82 | 0.23 | -0.569 | 0.015 | 3 | -0.1 | 0.01 | 0 | 0.01 | 0.46 | 0.0016 |
A358 | 589.6 | 521 | 487 | 142 | 0.29 | -0.643 | 0.025 | 5 | 0.1 | 0.02 | 0 | 0.02 | 0.71 | 0.0014 |
Malaya Kuonamka River Section (K3), Emyaksin Fm | ||||||||||||||
K3-18P | 21.5 | 521.4 | 268 | 120 | 0.45 | 0.7 | 0.03 | 0 | 0.02 | 1.52 | 0.0009 | |||
K3-22P | 26 | 521.13 | 246 | 239 | 0.97 | 2.7 | 0.06 | 0 | 0.04 | 1.01 | 0.0014 | |||
K3-26P | 30 | 520.89 | 456 | 54 | 0.12 | -0.5 | 0.03 | 0 | 0.02 | 2.12 | 0.0008 | |||
K3-28P | 32 | 520.77 | 183 | 31 | 0.17 | -0.4 | 0.02 | 0 | 0.02 | 1.25 | 0.0011 | |||
K3-30P | 34 | 520.65 | 310 | 54 | 0.17 | -0.3 | 0.05 | 0 | 0.03 | 1.38 | 0.0010 | |||
K3-32P | 36 | 520.53 | 276 | 74 | 0.27 | 0.0 | 0.07 | 0 | 0.23 | 1.29 | 0.0014 | |||
K3-35P | 39 | 520.35 | 418 | 49 | 0.12 | -0.6 | 0.02 | 0 | 0.02 | 0.74 | 0.0012 | |||
K3-37P | 41 | 520.23 | 943 | 87 | 0.09 | -0.6 | 0.02 | 0 | 0.01 | 1.18 | 0.0009 | |||
K3-39P | 43 | 520.11 | 338 | 34 | 0.10 | -0.6 | 0.02 | 0 | 0.02 | 1.29 | 0.0009 | |||
K3-41P | 45 | 519.99 | 348 | 39 | 0.11 | -0.6 | 0.03 | 0 | 0.02 | 1.65 | 0.0010 | |||
Bol'shaya Kuonamka (K6), Emyaksin Fm | ||||||||||||||
K6-24 | 23 | 521.4 | 569 | 151 | 0.26 | 0.0 | 0.05 | 0 | 0.02 | 1.03 | 0.0012 | |||
K6-27 | 26 | 521.15 | 363 | 67 | 0.19 | -0.3 | 0.04 | 0 | 0.02 | 1.44 | 0.0012 | |||
K6-30 | 29 | 520.89 | 568 | 65 | 0.12 | -0.6 | 0.06 | 0.01 | 0.02 | 1.62 | 0.0011 | |||
K6-31A | 30 | 520.81 | 615 | 137 | 0.22 | -0.1 | 0.02 | 0 | 0.02 | 0.98 | 0.0015 | |||
K6-34 | 33 | 520.55 | 815 | 111 | 0.14 | -0.5 | 0.07 | 0 | 0.01 | 1.44 | 0.0013 | |||
K6-35 | 34 | 520.47 | 475 | 72 | 0.15 | -0.4 | 0.02 | 0.01 | 0.01 | 0.97 | 0.0047 | |||
K6-38 | 37 | 520.21 | 380 | 66 | 0.17 | -0.3 | 0.01 | 0 | 0.01 | 0.76 | 0.0009 | |||
K6-39 | 38 | 520.13 | 312 | 46 | 0.15 | -0.4 | 0.01 | 0 | 0.02 | 1.35 | 0.0008 | |||
K6-40 | 39 | 520.04 | 251 | 178 | 0.71 | 1.7 | 0.01 | 0 | 0 | 1.00 | 0.0009 | |||
Reference materials | ||||||||||||||
IAPSO seawater¬ | -0.342 | 0.022 | 5 | |||||||||||
SRM-1d | 77 | 743 | 9.64 | -0.083 | 0.017 | 7 | 36.8 | 0.01 | 0.01 | 0.09 | ||||
- rpt | 70 | 478 | 6.87 | -0.089 | 0.024 | 2 | 26.2 | 0 | 0 | 0 | ||||
SRM-1d † | 5475 | 1475 | 0.27 | -0.105 | 0.017 | 7 | 1 | 0 | 0 | 0.01 | ||||
COQ-1 † | 112 | 727 | 6.51 | -0.337 | 0.024 | 5 | 24.9 | 0.08 | 0.03 | 0.2 | ||||
BCR-2 † | -0.274 | 0.017 | 5 | |||||||||||
BCR-2 † | -0.255 | 0.013 | 4 | |||||||||||
BCR-2 † | -0.24 | 0.009 | 5 |
*Age model based on δ13C chemostratigraphy after Maloof et al. (2010a).
Samples marked with † are whole-rock analysis, all others are mild acetic leaches (see methods for details).
¬) The processing of IAPSO seawater followed the procedure of Weyer et al. (2008).
ƒ) Uranium Enrichment factor is calculated as follows: U EFTh = (U/Th) /(U/Th)UCC, where the UCC stands for upper continental crust with a U/Th = 0.26
Table S-20 Mineralogical data for samples from the Sukharikha River section.
Sample | Calcite | Quartz | Dolomite | Ankerite | Chlorite (Clinochlore) | Mica | K-Feldspar | Haematite | sum |
wt. % | wt. % | wt. % | wt. % | wt. % | wt. % | wt. % | wt. % | ||
Sukharikha River Section. Igarka River. NW Siberia | |||||||||
A393 | 93 | 2 | 0 | 1 | 1 | 3 | 100 | ||
A388 | |||||||||
A384 | 88 | 4 | 0 | 1.5 | 1.75 | 4.5 | 0.25 | 92 | |
A379 | 56 | 25.5 | 8 | 0 | 2 | 8.5 | 66 | ||
A376 | 85 | 11 | <5 | 0.5 | 1 | 0.5 | 2.5 | 97.5 | |
A372 | |||||||||
A368 | 76 | 7 | 4 | 2.5 | 4 | 2 | 4.5 | 95.5 | |
A366 | 79 | 5 | 6.5 | 1.5 | 1 | 1 | 6 | 100 | |
A364 | 90 | 5 | 0 | 1 | 0.5 | 3.5 | 96 | ||
A361 | 90 | 2 | 0.5 | 0.5 | 0.5 | 1 | 5.5 | 94 | |
A358 | 71 | 4 | 9.5 | 9.5 | 6 | 3 | 7.5 | 103 | |
Bolshaya Kuonamka. Anabar Uplift. Section 96-6 | |||||||||
K6-24 | 88 | 4 | 1.5 | 2 | 2.5 | 2 | 97.5 | ||
K6-27 | 85 | 4 | 4 | 2.5 | 2 | 2 | 0.5 | 97 | |
K6-30 | 80 | 4 | 8 | 3 | 2 | 2.5 | 0.5 | 97 | |
K6-31A | 90 | 4 | 0.5 | 1 | 2 | 1.5 | 1.5 | < 0.5 | 97.5 |
K6-31B | 86 | 4.5 | 0.5 | 1.5 | 2 | 2.5 | 2.5 | 0.5 | 90 |
K6-34 | 76 | 5 | 3 | 6.5 | 3 | 2.5 | 3 | 1 | 97.5 |
K6-35 | 82 | 5.5 | 3.5 | 2 | 2.5 | 2 | 2.5 | 89.5 | |
K6-38 | 91 | 3 | 0.5 | 0.5 | 1 | 2 | 2 | 100 | |
K6-39 | 87 | 4.5 | 1 | 1.5 | 2 | 2 | 2 | < 0.5 | 95.5 |
K6-40 | 84 | 2 | 0.5 | 1.5 | 1.5 | 0.5 | 86.5 |
Table S-21 Sulphur isotope data of carbonate associated sulphate and total organic carbon content in samples from three Siberian sections (Sukharika River (A), Bolshaya Kuonamka river (K3), and Malaya Kuonamka river (K6)). Published C and O isotope data are shown for comparison (Kouchinsky et al., 2007).
Sample | Age assigned | TOC | δ34S | δ13C | δ18O |
Ma | wt. % | ‰ (V-CDT) | ‰ (V-PDB) | ‰ (V-PDB) | |
Sukharikha River Section, Krasnoporog Fm | |||||
A350 | 521.27 | 0.04 | 30.48 | -1.48 | -6.85 |
A358 | 521 | 0.04 | 32.58 | -1.27 | -6.9 |
A364 | 520.8 | 0.04 | 39.53 | 0.09 | -7.24 |
A366 | 520.73 | 0.03 | 38.27 | 0.67 | -6.6 |
A368 | 520.66 | 0.03 | 37.41 | 1.29 | -6.58 |
A372 | 520.53 | 0.03 | 39.37 | 1.56 | -7.12 |
A376 | 520.39 | 0.02 | 2.63 | -6.79 | |
A379 | 520.29 | 0.02 | 37.5 | 2.03 | -6.59 |
A384 | 520.12 | 0.03 | 1.09 | -6.98 | |
A388 | 519.98 | 0.03 | 35.02 | 0.07 | -6.94 |
A393 | 519.81 | 0.02 | -0.5 | -7.15 | |
Malaya Kuonamka River Section (K3), Emyaksin Fm | |||||
K3-18P | 521.4 | 0.033 | 27.93 | -1.29 | -6.24 |
K3-22P | 521.13 | 0.159 | -1.1 | -5.78 | |
K3-26P | 520.89 | 0.025 | 27.93 | -0.72 | -5.99 |
K3-28P | 520.77 | 0.032 | 33.27 | 0.22 | -5.96 |
K3-30P | 520.65 | 0.028 | 36.16 | 0.97 | -5.57 |
K3-32P | 520.53 | 0.024 | 35.2 | 1.76 | -5.62 |
K3-35P | 520.35 | 0.026 | 39.03 | 2.43 | -5.8 |
K3-37P | 520.23 | 0.018 | 1.72 | -5.92 | |
K3-39 | 520.11 | 0.027 | 1.03 | -5.88 | |
K3-41 | 519.99 | 0.131 | 0.23 | -6.32 | |
Bol'shaya Kuonamka (K6), Emyaksin Fm | |||||
K6-24 | 521.4 | 0.046 | -1.22 | -6.01 | |
K6-27 | 521.15 | 0.05 | 28.03 | -1.02 | -6.26 |
K6-30 | 520.89 | 0.097 | 28.81 | -0.54 | -6.07 |
K6-31 | 520.81 | 0.035 | 32.35 | 0.21 | -6.18 |
K6-32 | 520.72 | 0.062 | 0.99 | -5.91 | |
K6-34 | 520.55 | 0.041 | 36.86 | 1.8 | -5.42 |
K6-35 | 520.47 | 0.1 | 2.63 | -5.49 | |
K6-38 | 520.21 | 0.024 | 1.81 | -5.65 | |
K6-39 | 520.13 | 0.095 | 34.93 | 1.27 | -5.84 |
K6-40 | 520.04 | 0.11 | -5.95 |
Table S-22 Data sources for the marine redox proxy data (Mo, U, δ98Mo and δ238U) from Late Ediacaran and Cambrian sedimentary archives (modified after Boyle et al., 2014). All Mo isotope data were corrected from in-house reference materials to the NIST SRM 3136 scale (Goldberg et al., 2013; Nägler et al., 2014).
Formation | Locality | Biozone | Lithology | Age (max) | Age (min) | Mo | U | Mo/TOC | U/TOC | δ98Mo | δ98Mo ref ‰ offset from NIST 3136 at 0.25 ‰ | References |
Dictyonema Shales | Sweden | Shale | 482 | √ | Quinby-Hunt et al. (1989) | |||||||
Alum Shale | Albjära, Sweden | Cambrian Series 4 | Shale | 485 | √ | √ | √ | 0.08 | Dahl et al. (2010) | |||
Alum Shale | Gislövhammar, Sweden | Cambrian Series 4 | Shale | 485 | √ | √ | √ | 0.08 | Dahl et al. (2010) | |||
Alum Shale | Cambrian Series 4 | Shale | 499 | √ | √ | Lewan and Buchardt (1989) | ||||||
Alum Shale | Cambrian Series 4 | Shale | 499 | √ | √ | Partin et al. (2013) | ||||||
Alum Shale | Andrarum-3, Sweden | Cambrian Series 3-4 | Shale | 500 | √ | √ | √ | 0.08 | Dahl et al. (2010) | |||
Alum Shale | Andrarum-3, Sweden | Cambrian Series 3-4 | Shale | 500 | √ | √ | √ | 0.08 | Gill et al. (2011) (except δ98Mo) | |||
Alum Shale | Närke Area, Sweden | Shale | 505 | 499 | √ | √ | √ | Leventhal (1991) | ||||
Burgess Shale | Canada | Cambrian Series 3 | Shale | 505 | √ | √ | √ | 0.08 | Dahl et al. (2010) | |||
Hay River | Georgina Basin, Australia | Shale | 505 | √ | √ | Donnelly et al. (1988) | ||||||
Niutitang | Zunyi, South China | Cambrian Stage 3 | Shale | 520 | √ | √ | Jiang et al. (2006) | |||||
Niutitang | Zhangjiajie | Cambrian Stage 3 | Shale | 520 | 520 | √ | √ | Jiang et al. (2006) | ||||
Niutitang | Dingtai | Cambrian Stage 3 | Shale | 521 | 517 | √ | √ | √ | Xu et al. (2012) | |||
Niutitang | Maluhe | Cambrian Stage 3 | Shale | 521 | √ | √ | √ | Xu et al. (2012) | ||||
Niutitang | Dazhuliushui | Cambrian Stage 3 | Shale | 521 | √ | √ | √ | Xu et al. (2012) | ||||
Niutitang | Sancha | Cambrian Stage 3 | Shale | 521 | √ | √ | √ | Xu et al. (2012) | ||||
Niutitang | Ganziping | Cambrian Stage 3 | Shale | 521 | 520 | √ | √ | √ | √ | Lehmann et al. (2007) | ||
Niutitang | Yuanling | Cambrian Stage 3 | Shale | 521 | 520 | √ | √ | √ | √ | Lehmann et al. (2007) | ||
Yuertushi | Xiaoerbulaki, Tarim Basin, NW China | Cambrian Stage 2 | Shale | 521 | √ | √ | √ | Yu et al. (2009) | ||||
Yuertushi | Sugaitebulaki, Tarim Basin, NW China | Cambrian Stage 2 | Shale | 521 | √ | √ | Yu et al. (2009) | |||||
Niutitang | Maluhe | Cambrian Stage 3 | Shale | 521 | √ | Lehmann et al. (2007) | ||||||
Yu’anshan | Chengjiang, South China | Cambrian Stage 3 | Shale | 521 | √ | √ | √ | 0.08 | Dahl et al. (2010) | |||
Niutitang | Ganziping | Cambrian Stage 3 | Shale | 521 | 520 | √ | Wille et al. (2008) | |||||
Niutitang | Yuanling | Cambrian Stage 3 | Shale | 521 | 520 | √ | Wille et al. (2008) | |||||
Yuanshan | Xiaotan, China | Cambrian Stage 3 | Shale | 521 | 518 | √ | √ | Och et al. (2013) | ||||
Yuanshan | Dapotuo, China | Cambrian Stage 3 | Shale | 521 | 518 | √ | √ | Och et al. (2013) | ||||
Niutitang | Zhongnan, China | Cambrian Stage 3 | Shale | 521 | 520 | √ | √ | Och et al. (2013) | ||||
Niutitang | Dazhuliushui | Cambrian Stage 3 | Shale | 521 | √ | √ | Och et al. (2013) | |||||
Niutitang | Maluhe | Cambrian Stage 3 | Shale | 521 | √ | √ | Och et al. (2013) | |||||
Niutitang | Cili | Cambrian Stage 3 | Shale | 521 | √ | √ | Och et al. (2013) | |||||
Guojiaba | Songtao section, South China | Cambrian Stage 2-3 | Shale | 524 | 508 | √ | √ | √ | √ | Guo et al. (2007) | ||
Jiumenchong | Songtao section, South China | Cambrian Stage 2-3 | Shale | 524 | 520 | √ | √ | √ | √ | Guo et al. (2007) | ||
Shiyantou | Meischucun, China | Cambrian Stage 2 | Shale | 524 | 522 | √ | √ | Och et al. (2013) | ||||
Shiyantou | Dapotuo, China | Cambrian Stage 2 | Shale | 524 | 522 | √ | √ | Och et al. (2013) | ||||
Shiyantou | Xiaotan, China | Cambrian Stage 2 | Shale | 529 | 521 | √ | √ | Och et al. (2013) | ||||
Shiyantou | Meischucun, SYT | Cambrian Stage 2 | Shale | 529 | 521 | √ | √ | √ | Wen et al. (2011) | |||
Hetang | Cambrian Stage 3 | Shale | 531 | √ | Zhou and Jiang (2009) | |||||||
Ara Group | ALNR-1, Oman | Ediacaran-Cambrian | Shale | 540 | √ | √ | Wille et al. (2008) | |||||
Ara Group | MM NW-1, Oman | Ediacaran-Cambrian | Shale | 540 | √ | √ | Wille et al. (2008) | |||||
Ara Group | MM NW-1, Oman | Ediacaran-Cambrian | Shale | 542 | √ | Schröder and Grotzinger (2007) | ||||||
Dengying | Ediacaran Series 2 | Shale | 545 | √ | Partin et al. (2013) | |||||||
Dengying | Ediacaran Series 2 | Shale | 545 | √ | √ | Guo et al. (2007) | ||||||
Liuchapo | Ediacaran Series 2 | Shale | 545 | √ | √ | Guo et al. (2007) | ||||||
Dengying | Songtao section, South China | Shale | 545 | √ | Guo et al. (2007) | |||||||
Nama Group | Namibia | Ediacaran Series 2 | Shale | 548 | √ | McLennan et al. (1983) | ||||||
Doushantuo | Songtao section,South China | Shale | 551 | √ | Partin et al. (2013) | |||||||
Doushantuo | Songtao section,South China | Shale | 551 | √ | Guo et al. (2007) | |||||||
Isaac | Castle Creek + Cariboo Mountains, Windermere, Canada | Shale | 565 | √ | 0.08 | Dahl et al. (2010) | ||||||
Drook | New Foundland, Canada | Shale | 565 | √ | √ | √ | 0.08 | Dahl et al. (2010) | ||||
Doushantuo, Cycle 3 | Jiulongwan, Zhongling, Minle, Longe Nanhua Basin, South China | Shale | 565 | 555 | √ | √ | Li et al. (2010) | |||||
Gaskiers | New Foundland, Canada | Shale | 580 | √ | √ | √ | 0.08 | Dahl et al. (2010) | ||||
Upper Kaza | Windermere, Canada | Shale | 580 | √ | √ | √ | 0.08 | Dahl et al. (2010) |