
▪ Spicule morphology impacts stable silicon isotopic composition of
sponge archives

K.R. Hendry1,2*, H. Pryer3, S.L. Bates1, F. Mienis4, J.R. Xavier5,6

Abstract https://doi.org/10.7185/geochemlet.2423

The stable silicon isotopic composition of siliceous sponge skeletal elements, spicules,
forms a potential proxy for past dissolved silicon (DSi) concentrations of bottomwaters.
Field-based studies have shown that there is a non-linear relationship between the
concentration of ambient DSi and both the isotopic composition (denoted by δ30Si)
of spicules and apparent isotopic fractionation by sponges during growth. There is con-
siderable scatter in the calibration, with some studies highlighting variation within an
individual sponge, and between individuals, in both monospecific and more diverse
communities. Furthermore, some derived sponge forms, including hypersilicified
and carnivorous sponges, appear to have anomalous isotopic fractionation, deviating

significantly from other sponges. When reconstructing past DSi, it is only possible to differentiate spicules by their morphology,
which inmany cases will not be taxonomically diagnostic. However, there has yet to be a systematic study of core top and downcore
δ30Si measurements from different spicule types. Here we address that gap using spicules extracted from two sediment cores taken
at the summit of the Schulz Bank, a seamount located on theArcticMid-OceanRidge between theNorwegian andGreenlandSeas.
Mean isotopic compositions of downcore spicules of a given morphology were similar between nearby cores and mainly did not
show any significant differences. Our results did reveal a systematic difference between spicule types extracted from a given sedi-
ment horizon, and a significant difference in the downcoremean compositions, between needle-likeOxea and othermorphologies.
These new findings imply that picking a single spicule type is best practice for palaeoceanographic applications of sponge archives,
but the choice of Oxea spicules could bias these reconstructions towards high DSi concentrations.
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Introduction

The global marine silicon cycle plays a critical role in the Earth’s
climate system via carbon uptake and sequestration (Struyf et al.,
2009; Tréguer et al., 2021). Diatoms, a siliceous phytoplankton
group common to most marine ecosystems, are one of the most
important contributors to organic matter export production. As
they form their cell walls from silica, diatoms have an absolute
requirement for dissolved silicon (silicic acid, or DSi), and largely
rely on upwelling of deeper waters to obtain the nutrients
required for growth. As such, archives of past deep and bottom
water DSi concentrations in addition to surface conditions are
essential for understanding past ocean biogeochemistry and cli-
mate impacts (Ellwood et al., 2010; Fontorbe et al., 2016; Sutton
et al., 2018; Hendry et al., 2019; Dumont et al., 2020).

Surface and subsurface silicon cycling processes can be
reconstructed using the geochemistry of siliceous microfossils,
such as diatoms and radiolarians, extracted from marine sedi-
ments (Hendry et al., 2014; Abelmann et al., 2015). In deeper
waters benthic siliceous sponges create a skeleton of sponge

spicules, which have the potential to act as archives of past bot-
tom water conditions, providing a unique source of the critical
information required to reconstruct past changes in DSi supply
to the surface ocean from upwelling waters (De La Rocha, 2003;
Łukowiak, 2020). Several field-based studies have shown that
there is a non-linear relationship between the concentration
of ambient DSi and both the isotopic composition (denoted
by δ30Si) of spicules and apparent isotopic fractionation by
sponges during growth that is apparently insensitive to temper-
ature and other seawater properties (Hendry et al., 2010; Wille
et al., 2010; Hendry and Robinson, 2012). At present, there is
no evidence for any systematic difference in isotopic fractiona-
tion behaviour between the major groups of siliceous sponges,
demosponges and hexactinellids, after differences in habitat
and depth preference are taken into account (Cassarino et al.,
2018; Hendry et al., 2019; Pack et al., 2023). However, there is
considerable scatter in the spicule δ30Si-DSi calibration that
remains poorly understood. Whilst some studies show good
agreement in measurements of spicules taken from individual
sponges and good agreement between laboratories (e.g.,
Hendry et al., 2011), other studies highlight variation within
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an individual sponge, and between individuals, in both mono-
specific and more diverse communities (Hendry et al., 2019).
Genetically-controlled biomineralisation pathways appear to
be strong drivers of spicule isotopic heterogeneity, with some
derived sponge forms, including hypersilicified demosponges,
glass sponges, and carnivorous sponges, exhibiting anomalous
isotopic fractionation that deviates significantly from other
sponges (Hendry et al., 2015; Jochum et al., 2017; Cassarino et al.,
2018).

Sponge spicules, when buried in sediments, can become
part of the geological record forming a palaeo-archive that could
potentially be used to reconstruct past bottomwater DSi concen-
trations. In most cases, the sponge skeleton completely disinte-
grates and spicules in marine sediment cores are found as
separate elements. The larger spicules (megascleres) are gener-
ally preserved better, and more readily isolated, than the smaller
and more taxonomically diagnostic microscleres. As such, it can
be highly challenging to determine fromwhich sponge any given
fossil spicule derived. Earlier palaeoceanographic studies simply
extracted all spiculematerial for analysis (e.g., Hendry et al., 2010;
Hendry et al., 2012), but more recent studies have taken the
conservative approach of picking only one spicule type, usually
selecting only the needle-like monaxonic spicules (e.g., Fontorbe
et al., 2016; Fontorbe et al., 2017). Developments in the use of
secondary ion mass spectrometer (SIMS) methodologies have
also allowed the targeting of individual spicules for isotopic
analysis (e.g., Trower et al., 2021). However, to date, there has
been no systematic study into the impact of spicule type on
δ30Si records and – so – palaeoceanographic reconstructions.

In this study, we address this gap using spicules extracted
from box cores collected from a sponge ground in the Arctic
Ocean. We ask the questions: do spicules of a given morphology
picked from a given sediment horizon have consistent isotopic
compositions? Do spicules of a given morphology picked from
nearby sediment cores have consistent isotopic compositions?
Is there a significant offset between different spicule morpholo-
gies picked from a given sediment horizon?

Methods

Box cores were collected from the Schulz Bank (SB) aboard the
R/V G.O. Sars expedition GS2016109A in 2016. The summit of
the SB is at approximately 560–600 m water depth, with a thick
(∼20 cm) sponge spicule mat characterising the upper reaches
of the slope and summit (Meyer et al., 2023). The oceanographic
conditions around the SB are beneficial to sponge growth, with
relatively nutrient-rich bottom waters frequently flushed with
high oxygen, warm Arctic Intermediate Waters (Hanz et al.,
2021). Mean nutrient concentrations from between 600 and
800 m on SB are 7.56 mM (2 s.d. 0.63), 13.97 mM (2 s.d. 0.30),
and 0.95 mM (2 s.d. 0.01) for DSi, nitrate and phosphate respec-
tively (full details in Roberts et al., 2018). A high organic particulate
matter supply ismaintained by strong diurnal currents, which also
act to prevent sedimentation (Roberts et al., 2018).

These conditions support a dense benthic community of
sponges, or ‘sponge ground’ on the SB (Fig. 1a). The SB sponge
ground is diverse including several species of demosponges and
hexactinellids (see Supplementary Information).

Box cores BC1 and BC2 were collected from 73.81° N,
7.51° E, from 773 m and 765 m water depth respectively, less
than 5 m apart on the seafloor. BC1 and BC2 were subsampled
using plastic tubes, which were extruded and wrapped in clean
foil and frozen for transport (Fig. 1b,c). Although age models do
not exist for these subcores, the agemodel based on radiocarbon
age dating of a nearby core GS2017-47 collected during an

expedition in 2017 would indicate that the top 16 cm as sub-
sampled in this study should be approximately 6,000 years old
(unpublished data).

The sediments were thawed in the UK, photographed
(Fig. 1b,c) and sectioned into 1 cm slices. These slices were air
dried in a cool oven (40 °C), washed and sieved at 63 μm, and then
re-dried. Monoaxonic spicules were hand picked from the sedi-
ments using a very fine brush under a stereomicroscope and cat-
egorised into different spicule morphologies (see Fig. 1d). The
categories represented are: Oxea, Plagiotriaene, Cladotylote,
Dichotriaene, Protriaene, Dichodiaene (rare), and Prodiaene
(rare) (Łukowiak et al., 2022). It should be noted that these spicule
morphologies are not diagnostic of sponge species and may be
present across different taxonomic groupswithin classes of demo-
spongiae (including carnivorous sponges). One sample of
Pentactine spicules (from hexactinellid sponges) was recoverable
from BC1.

The spicules (3 to 10 spicules per replicate, depending on
size and availability) were cleaned for organic matter by heating
for 1 hr at 80 °C in 30 % reagent grade hydrogen peroxide
before being rinsed in 18 MΩ cm Milli-Q. The samples were
dried down in concentrated in house distilled nitric acid
(HNO3) at 120 °C, and then dissolved in 1 ml 0.4 M sodium
hydroxide (Analar) at 100 °C for 24–72 hours. The solutions
were acidified with 50 μl 8 N HNO3, and diluted with 1 ml
Milli-Q. All samples and standards were chemically purified
using cation exchange resin (Bio-Rad AG50W-X12) following
published protocols, which have shown quantitative Si yield
and cation retention under neutral or acidic conditions (e.g.,
Georg et al., 2006; Zambardi and Poitrasson, 2011; Savage
and Moynier, 2013). Before analysis, the solutions were doped
with a magnesium solution. The samples were analysed within
72 hours of purification for 28Si, 29Si, 30Si, 24Mg, 25Mg, and 26Mg
using a Multi-Collector Inductively Coupled Plasma Mass
Spectrometer (Thermo Neptune MC-ICP-MS) in medium res-
olution mode. Sample blank corrections and Mg isotope mass
bias corrections were carried out offline, before being normal-
ised to NBS28 (RM8546) (Hendry et al., 2015). A three isotope
plot shows that all analyses fall on a mass-dependent δ29Si and
δ30Si line, with a gradient of 0.510 ± 0.003, within the range of
equilibrium or kinetic fractionation (Reynolds et al., 2007).
Repeat measurements of reference standards Diatomite and
LMG08 (spongematerial) reveal a long term δ30Si reproducibil-
ity of 1.24 ± 0.11 ‰ (n = 64) and −3.46 ± 0.12 ‰ (n = 65)
respectively (2 s.d.), within published ranges (Reynolds et al.,
2007; Hendry et al., 2011). Each sample aliquot was measured
at least twice and most were measured in triplicate. When pos-
sible, duplicate analyses were carried out on true replicates (i.e.
analyses of separate aliquots of spicules that were picked from
the same horizon). Statistical analyses (ANOVA and t-tests)
were carried out usingMATLAB R2021b for themore abundant
spicule types, after testing for normality using an Anderson-
Darling test (α = 0.05).

Results

Oxea spicule δ30Si compositions ranged from −1.47 to −2.05 ‰.
The other spicule types exhibited similar ranges, from −0.94 to
−1.76 ‰ (Fig. 2a,b). The one sample of hexactinellid
Pentactine spicules from BC1 (10–11 cm depth) had an isotopic
composition of −1.11‰. The mean difference between δ30Si val-
ues of the true replicates was 0.14 ‰, with a maximum of
0.42 ‰ (Fig. 2c).

Within each core, there was a significant difference
between the mean isotopic composition of the different spicule
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morphologies downcore (for BC1, F -statistic= 24.77, d.f.= 3, p
<< 0.001; for BC2, F -statistic= 6.39, d.f.= 3, p= 0.001), with post
hoc analysis indicating that the Oxea spicules were significantly
different from the other spicule morphologies analysed. There
was no significant difference for either core between the isotopic
compositions of the Plagiotriaene, Dichotriaene, and Protriaene
spicule morphologies (Fig. 3).

There was no significant difference between the mean
downcore isotopic composition of same spicule morphologies
between BC1 and BC2, except for a weak difference between
the Dichotriaene spicules (p= 0.025). Note that there is an
inherent caveat in taking averages of δ30Si values downcore,
in that changes in environmental parameters through time could
influence the spicule geochemical compositions.

Discussion

Comparison between Schulz Bank and other North Atlantic
sponge grounds. To put our findings in a broader context, we
can compare these findings from sedimentary spicules to field

studies investigating stable silicon isotopic compositions of indi-
vidual intact sponges. The SB study site is bathed in water with a
similar DSi concentration to North Atlantic Geodia sponge
aggregations at Orphan Knoll in the Labrador Sea and coastal
Greenland (Hendry et al., 2019). The δ30Si values from different
species of Geodia were assessed from these locations by taking
subsamples from individual specimens, likely comprising a mix-
ture of different spicule morphology types. The range of δ30Si
values between the specimens was similar (−1.0 to −2.4 ‰)
to the range from the differentiated sedimentary spicules
measured in this study. Our observations show that spiculemor-
phology likely contributes to variation in δ30Si between individ-
uals of similar species, but other factors including localised
differences in environmental conditions and growth ratewill also
play a role (Hendry et al., 2019).

Impact of spicule morphology on DSi concentration
reconstructions. Here, we discuss the differences in δ30Si values
obtained between spicule morphologies within and between the
nearby box cores to address three key questions surrounding the
impact of spicule form on palaeoceanographic archives.

Figure 1 (a) Remotely Operated Vehicle image of the sponge ground of the Schulz Bank summit (image courtesy of the University of
Bergen). (b-c) Photographs of the subcores from BC1 and BC2. (d) Spicule morphology definitions used in this study.
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1. Do spicules of a given morphology picked from a
given sediment horizon have consistent isotopic composi-
tions? The analyses of true replicates indicates that there is some
variability in δ30Si within a given horizon for a particular spicule
morphology. No differences were observed between column
replicates (one aliquot of dissolved spicule passed through two
columns), showing that the variability was not caused by sample
processing. The mean difference between true duplicates was
0.14‰– similar to the long term reproducibility based on repeat
measurements of reference materials – and is often considerably
less. However, there were some samples where there were larger

differences between duplicate δ30Si measurements, up to 0.3 to
0.4 ‰, indicating significant environmental heterogeneity.
There does not appear to be any relationship between duplicate
offset and spicule type, indicating no clear link between isotopic
variability and biomineralisation. Instead, these offsets could be
due to recycling of silica (i.e. partial dissolution effects), localised
differences in environmental conditions, or spicule growth rate
(Hendry et al., 2019).

2. Do spicules of a given morphology picked from
nearby sediment cores have consistent isotopic composi-
tions?Our findings indicate that spicules of a given morphology

Figure 2 Downcore δ30Si values from the different spicule types extracted from (a) BC1 and (b) BC2. Error bar shows 2 σ based on repeat
measurements of reference materials. Each point represents the mean of repeat measurements of a sample aliquot (n= 2 or 3). (c)
Assessment of true replicates of separate aliquots from a given horizon. Each symbol represents the mean of repeat measurements (n=
2 or 3, error bar 1 s.d.) of each of multiple aliquots (n= 2) of spicules extracted from the same horizon.
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extracted from the two sediment cores do not have statistically
different δ30Si compositions, and so should yield consistent
[DSi] reconstructions. It is possible that there are differences
in fossil age between spicules from the same 1 cm slice horizon
in different cores due to small scale heterogeneities in sedimen-
tation rate. However, given the assumed age of the core, there is
only likely a 6,000 year age difference between the core top and
16 cm depth, and no large scale shifts in Arctic Ocean circulation
that would have influenced bottom water conditions and
nutrient dynamics are likely over this timescale (Rasmussen et al.,
2014).

3. Is there a significant offset between different spicule
morphologies picked from a given sediment horizon? Our
analyses of different spicule morphologies extracted from the
same core horizons indicated that the δ30Si composition of
sponge silica, used to reconstruct past bottom water DSi,
depends on the spicules chosen during the picking process.
Oxea spicules could be a potential target for palaeoceanographic
research as they are commonly found, are often large and so pro-
vide a useful amount of silica for analysis, and are readily iden-
tified as simple double-pointed needles. However, our findings
reveal a significant offset between Oxea spicules and tetraxonic

spicules analysed (common forms being Plagiotriaene,
Dichotriaene, and Protriaene). There was no significant differ-
ence downcore between Plagiotriaene, Dichotriaene, and
Protriaene spicules. In other words, the Oxea spicules form
the outlier, yielding significantly lighter isotopic compositions
than tetraxonic spicules, potentially reflecting an impact of bio-
mineralisation processes, differential preservation, or redistribu-
tion by currents.When the shallow core spicule data are added to
the δ30Si-DSi calibration plot (Fig. 4a), it is apparent that Oxea
plot towards the isotopically lighter region of the observed scat-
ter, with the other spicules falling more in the mid-range of the
variability seen in field studies. This observation is robust even
when taking into consideration any possible bias due to the iso-
topic composition of ambient seawater (Fig. 4b). Our results
could imply that using Oxea could bias [DSi] reconstructions
towards higher values. To test this possibility, we have substi-
tuted the range in spicule compositions into Equation 1 (adapted
from Hendry et al., 2019):

½DSi� = ð27.6=ðδ30SiSponge − δ30SiDSi þ 4.6ÞÞ − 7.4 Eq. 1

Figure 3 Box and whisker plots summarising downcore δ30Si data
from (a) BC1 and (b) BC2 for the main spicule types present in the
sediment. The notches represent the median values, the bottom
and top edges of the box represent the 25 th and 75 th percentiles,
and the whiskers encompass all data points not considered statis-
tical outliers (outliers are shown by a red cross).

Figure 4 New spicule isotopic data from this study (grey hollow
circles are non-Oxea Demosponge spicules; solid circles are Oxea
spicules) plottedwith existing field calibration of ambient DSi con-
centrations against (a) sponge spicule δ30Si values and (b) apparent
isotopic fractionation (Δ30Si= δ30Sisponge− δ30Sisw), assuming ambi-
ent seawater δ30Sisw at the SB of þ1.7 ‰ (Brzezinski et al., 2021).
Blue symbols= demospongeswithout Cladorhizidae, red symbols=
hexactinellids without hypersilicifiers.
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where we have assumed the bottom water isotopic composition,
δ30Si DSi, to be þ1.7 ‰, similar to the deep Central Arctic Basin
(Brzezinski et al., 2021). Reconstructed [DSi] for Oxea ranged
from 12 to 25 mM, with a mean of 16 mM, whereas the range
for the other spicules was 7 to 17 mM (mean 11 mM), matching
better with modern [DSi] observations (mean value approxi-
mately 8 mM; Roberts et al., 2018). As such, our findings suggest
thatOxeamay not be the best spiculemorphology to select when
using the existing field-based calibration, or that a new calibra-
tion using core top Oxea spicules is required.

Synthesis

We have presented a systematic study of core top and downcore
δ30Si measurements from different sponge spicule types
extracted from box core material. Mean δ30Si compositions of
the spicules of a given morphology in the top ∼16 cm were
invariant with depth and largely did not show any significant
differences between the subcores. Our results revealed a differ-
ence between spicule types extracted from a given sediment
horizon, and significant differences between morphologies in
the downcore mean δ30Si values. Our new findings imply that
picking a single spicule type is best practice for palaeoceano-
graphic applications of sponge archives, and the choice of
Oxea spicules could bias these reconstructions towards high
DSi concentrations.
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Species of Demosponges and Hexactinellids from the Schulz Bank Sponge Ground 
The Schulz Bank sponge ground is diverse including several species of demosponges and hexactinellids; 
Geodia parva (Hansen, 1885); Geodia phlegraei (Sollas, 1880); Geodia hentscheli (Cárdenas et al., 2010); 
Stelletta rhaphidiophora (Hentschel, 1929); Craniella infrequens (Carter, 1876); Thenea valdiviae (Von 
Lendenfeld, 1907); Hexadella dedritifera (Topsent, 1913); Polymastia thielei (Koltun, 1964) including some 
carnivorous sponges (Family Cladorhizidae), and hexactinellids (Schaudinnia rosea (Fristedt, 1887); 
Scyphidium septentrionale (Schulze, 1900); Trichasterina borealis (Schulze, 1900) and Asconema foliatum 
(Fristedt, 1887; Meyer et al., 2019). 
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